- История создания и развития диодов
- Типы диодов
- Ламповые диоды
- Полупроводниковые диоды
- Специальные типы диодов
- Классификация и система обозначений
- СССР
- Россия
- Импортные радиодетали
- EIA/JEDEC
- Pro Electron
- Другие
- Графическое изображение
- Уравнение Шокли для диода
- Применение диодов
- Диодные выпрямители
- Диодные детекторы
- Диодная защита
- Диодные переключатели
- Диодная искрозащита
- Интересные факты
- Примечания
- Маркировка
- Устройство
- Принцип работы
- ВАХ-характеристики
История создания и развития диодов
![]() |
![]() |
|
Схематическое изображение вакуумного диода: в стеклянной лампе в центре разогреваемый катод, по периферии — анод. Справа — обозначение лампового диода на схемах |
![]() |
![]() |
|
Слева — типичные представители полупроводниковых диодов. На корпусе прибора катод обозначается кольцом или точкой. Справа — обозначение (по ГОСТ 2.730-73) выпрямительного полупроводникового диода на схемах |
Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в 1873 году болгарский учёный Фредерик Гутри открыл принцип действия термионных диодов (вакуумных ламповых с прямым накалом), в 1874 году немецкий учёный Карл Фердинанд Браун открыл принцип действия кристаллических (твёрдотельных) диодов.
Принципы работы термионного диода были заново открыты 13 февраля 1880 года Томасом Эдисоном, и затем, в 1883 году, запатентованы (патент США № 307031). Однако дальнейшего развития в работах Эдисона идея не получила. В 1899 году немецкий учёный Карл Фердинанд Браун запатентовал выпрямитель на кристалле. Джэдиш Чандра Боус развил далее открытие Брауна в устройство, применимое для детектирования радио. Около 1900 года Гринлиф Пикард создал первый радиоприёмник на кристаллическом диоде. Первый термионный диод был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона) 16 ноября 1904 года (патент США № 803684 от ноября 1905 года). 20 ноября 1906 года Пикард запатентовал кремниевый кристаллический детектор (патент США № 836531).
В конце XIX века устройства подобного рода были известны под именем выпрямителей, и лишь в 1919 году Вильям Генри Иклс ввёл в оборот слово «диод», образованное от греческих корней «di» — два, и «odos» — путь.
Ключевую роль в разработке первых отечественных полупроводниковых диодов в 1930-х годах сыграл советский физик Б. М. Вул.
Типы диодов
Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны коронного и тлеющего разряда), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.
Диоды | |||||||||||
Полупроводниковые | Не полупроводниковые | ||||||||||
Газозаполненные | Вакуумные |
Ламповые диоды
Основная статья: Электровакуумный диод
Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается проходящим через него током из специальной цепи накала или отдельной нитью накала. Благодаря этому часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если электрическое поле направлено в противоположную сторону, поле препятствует движению электронов, и тока (практически) нет.
Полупроводниковые диоды
Полупроводниковый диод в стеклянном корпусе. На фотографии виден полупроводник с подходящими к нему контактами Основная статья: Полупроводниковый диод
Полупроводниковый диод состоит либо из полупроводников p-типа и n-типа (полупроводников с разным типом примесной проводимости), либо из полупроводника и металла (диод Шоттки). Контакт между полупроводниками называется p-n переходом и проводит ток в одном направлении (обладает односторонней проводимостью).
Специальные типы диодов
Цветные светодиоды
Светодиод ультрафиолетового спектра излучения (увеличен)
- Стабилитрон (диод Зенера) — диод, работающий в режиме (обратимого) пробоя p-n-перехода (см. обратную ветвь вольт-амперной характеристики). Используются для стабилизации напряжения.
- Туннельный диод (диод Лео Эсаки) — диод, в котором используются квантовомеханические эффекты. На вольт-амперной характеристике имеет область так называемого «отрицательного сопротивления». Применяются как усилители, генераторы и пр.
- Обращённый диод — диод, имеющий гораздо более низкое падение напряжения в открытом состоянии, чем обычный диод. Принцип работы такого диода основан на туннельном эффекте.
- Точечный диод — диод, отличающийся низкой ёмкостью p-n-перехода и наличием на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением. Ранее использовались в СВЧ-технике (благодаря низкой ёмкости p-n-перехода) и применялись в генераторах и усилителях (благодаря наличию на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением).
- Варикап (диоды Джона Джеумма) — диод, обладающий большой ёмкостью при запертом p-n-переходе, зависимой от приложенного обратного напряжения. Применяются в качестве конденсаторов переменной ёмкости (управляемых напряжением).
- Светодиод (диоды Генри Раунда) — диод, отличающийся от обычного диода тем, что излучает фотоны при рекомбинации электронов и дырок в p-n-переходе. Выпускаются светодиоды с излучением в инфракрасном, видимом, а с недавних пор — и в ультрафиолетовом диапазоне.
- Полупроводниковый лазер — диод, близкий по устройству к светодиоду, но имеющий оптический резонатор. Излучает когерентный свет.
- Фотодиод — диод, управляемый светом.
- Солнечный элемент — диод, похожий на фотодиод, но работающий без смещения. Падающий на p-n-переход свет вызывает движение электронов и генерацию тока.
- Диод Ганна — диод, используемый для генерации и преобразования частоты в СВЧ-диапазоне.
- Диод Шоттки — диод с малым падением напряжения при прямом включении.
- Лавинный диод — диод, принцип работы которого основан на лавинном пробое (см. обратный участок вольт-амперной характеристики). Применяется для защиты цепей от перенапряжений.
- Лавинно-пролётный диод — диод, принцип работы которого основан на лавинном умножении носителей заряда. Применяется для генерации колебаний в СВЧ-технике.
- Магнитодиод — диод, вольт-амперная характеристика которого существенно зависит от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.
- Стабистор — диод, при работе которых используется участок ветви вольт-амперной характеристики, соответствующий «прямому напряжению» на диоде.
- Смесительный диод — диод, предназначенный для перемножения двух высокочастотных сигналов.
- pin-диод — диод, обладающий меньшей ёмкостью за счёт наличия между сильнолегированными полупроводниками p- и n-типов материала, характеризующегося собственной проводимостью. Используется в СВЧ-технике, силовой электронике, как фотодетектор.
Классификация и система обозначений
Классификация диодов по их назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам, роду исходного материала (полупроводника) отображается системой условных обозначений их типов. Система условных обозначений постоянно совершенствуется в соответствии с возникновением новых классификационных групп и типов диодов. Обычно системы обозначений представлены буквенно-цифровым кодом.
СССР
На территории СССР система условных обозначений неоднократно претерпевала изменения и до настоящего времени на радиорынках можно встретить полупроводниковые диоды, выпущенные на заводах СССР и с системой обозначений согласно отраслевого стандарта ГОСТ 11 336.919-81, базирующегося на ряде классификационных признаков изделий. Итак,
- первый элемент буквенно-цифрового кода обозначает исходный материал (полупроводник), на основе которого изготовлен диод, например:
- Г или 1 — германий или его соединения;
- К или 2 — кремний или его соединения;
- А или 3 — соединения галлия (например, арсенид галлия);
- И или 4 — соединения индия (например, фосфид индия);
- второй элемент — буквенный индекс, определяющий подкласс приборов;
- Д — для обозначения выпрямительных, импульсных, магнито- и термодиодов;
- Ц — выпрямительных столбов и блоков;
- В — варикапов;
- И — туннельных диодов;
- А — сверхвысокочастотных диодов;
- С — стабилитронов, в том числе стабисторов и ограничителей;
- Л — излучающие оптоэлектронные приборы;
- О — оптопары;
- Н — диодные тиристоры;
- третий элемент — цифра (или в случае оптопар — буква), определяющая один из основных признаков прибора (параметр, назначение или принцип действия);
- четвёртый элемент — число, обозначающее порядковый номер разработки технологического типа изделия;
- пятый элемент — буквенный индекс, условно определяющий классификацию по параметрам диодов, изготовленных по единой технологии.
Например: КД212Б, ГД508А, КЦ405Ж.
Кроме того, система обозначений предусматривает (в случае необходимости) введение в обозначение дополнительных знаков для выделения отдельных существенных конструктивно-технологических особенностей изделий.
Россия
Продолжает действовать ГОСТ 2.730-73 — «Приборы полупроводниковые. Условные обозначения графические».
![]() |
Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел. Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 января 2017 года. |
Импортные радиодетали
Существует ряд общих принципов стандартизации системы кодирования для диодов за рубежом. Наиболее распространены стандарты EIA/JEDEC и европейский «Pro Electron».
EIA/JEDEC
Дополнительные сведения: Electronic Industries Alliance и Joint Electron Devices Engineering Council
Стандартизированная система EIA370 нумерации 1N-серии была введена в США EIA/JEDEC (Объединенный инженерный консилиум по электронным устройствам) приблизительно в 1960 году. Среди самого популярного в этой серии были: 1N34A/1N270 (германиевый), 1N914/1N4148 (кремниевый), 1N4001—1N4007 (кремниевый выпрямитель 1A) и 1N54xx (мощный кремниевый выпрямитель 3A).
Pro Electron
Дополнительные сведения: Pro Electron
Согласно европейской системе обозначений активных компонентов Pro Electron, введенной в 1966 году и состоящей из двух букв и числового кода:
- первая буква обозначает материал полупроводника:
- A — Germanium (германий) или его соединения;
- B — Silicium (кремний) или его соединения;
- вторая буква обозначает подкласс приборов:
- A — сверхвысокочастотные диоды;
- B — варикапы;
- X — умножители напряжения;
- Y — выпрямительные диоды;
- Z — стабилитроны, например:
- AA-серия — германиевые сверхвысокочастотные диоды (например, AA119);
- BA-серия — кремниевые сверхвысокочастотные диоды (например: BAT18 — диодный переключатель)
- BY-серия — кремниевые выпрямительные диоды (например: BY127 — выпрямительный диод 1250V, 1А);
- BZ-серия — кремниевые стабилитроны (например, BZY88C4V7 — стабилитрон 4,7V).
Другие
Другие распространённые системы нумерации/кодирования (обычно производителем) включают:
- GD-серия германиевых диодов (например, GD9) — это очень старая система кодирования;
- OA-серия германиевых диодов (например, OA47) — кодирующие последовательности разработаны британской компанией Mullard.
Система JIS маркирует полупроводниковые диоды, начиная с «1S».
Кроме того, многие производители или организации имеют свои собственные системы общей кодировки, например:
- HP диод 1901-0044 = JEDEC 1N4148
- Военный диод CV448 (Великобритания) = Mullard типа OA81 = GEC типа GEX23
Графическое изображение
Шаблон:Main article
Графические символы различных типов диодов используемые на электрических схемах в соответствии с их функциональным назначением. треугольник указывает направление тока от анода к катоду (прямая проводимость).
Диод
Светоизлучающий диод (Светодиод)
Диод супрессор (Защитный диод; TVS)
Уравнение Шокли для диода
Уравнение Шокли для идеального диода (названо в честь изобретателя транзистора Уильяма Шокли) характеризует диод, обладающий идеальной вольт-амперной характеристикой для прямого и обратного тока. Уравнение Шокли для идеального диода:
I ( V ) = I S ( e V / ( n V T ) − 1 ) , {displaystyle I(V)=I_{mathrm {S} }left(e^{V/(nV_{mathrm {T} })}-1right),}
где
I — ток, проходящий через диод; IS — ток насыщения диода (максимальная величина обратного тока без учёта пробоя); V — напряжение на диоде; VT — термическое напряжение диода; n — коэффициент неидеальности, известный также как коэффициент эмиссии.
Коэффициент неидеальности n обычно лежит в пределах от 1 до 2 (хотя в некоторых случаях может быть выше) в зависимости от процесса изготовления и полупроводникового материала. Во многих случаях предполагается, что n примерно равно 1 (таким образом, коэффициент n в формуле опускается). Коэффициент неидеальности не является частью уравнения диода Шокли и был добавлен для учёта несовершенства реальных переходов. Поэтому в предположении n = 1 уравнение сводится к уравнению Шокли для идеального диода.
Термическое напряжение VT приблизительно составляет 25,85 мВ при 300 K (температура, близкая к «комнатной температуре», обычно используемой в программах моделирования). Для конкретной температуры его можно найти по формуле:
V T = k T q , {displaystyle V_{mathrm {T} }={frac {kT}{q}},,}
где
- k — постоянная Больцмана;
- T — абсолютная температура p-n-перехода;
- q — элементарный заряд электрона.
Ток насыщения IS не является постоянным для каждого диода, зависит от температуры значительно больше напряжения VT. Напряжение V обычно уменьшается при увеличении T при фиксированном I.
Уравнение Шокли для идеального диода( или закон диода) получено с допущением, что единственными процессами, вызывающими ток в диоде, является дрейф (под действием электрического тока), диффузия и термическая рекомбинация. Также полагалось, что ток в p-n-области, вызванный термической рекомбинацией, незначителен.
Применение диодов
Диодные выпрямители
Трёхфазный выпрямитель А. Н. Ларионова на трёх полумостах
Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий; см. выпрямитель). Диодный выпрямитель или диодный мост (то есть 4 диода для однофазной схемы, 6 — для трёхфазной полумостовой схемы или 12 — для трёхфазной полномостовой схемы, соединённых между собой по схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме А. Н. Ларионова на трёх параллельных полумостах применяется в автомобильных генераторах, преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.
В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той их особенностью, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию — пробою.
В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов.
Если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается.
Диодные детекторы
Основная статья: Детектор (электронное устройство)
Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются в радиоприёмных устройствах (радиоприёмниках, телевизорах и им подобных). При работе диода используется квадратичный участок вольт-амперной характеристики.
Диодная защита
Диоды применяются для защиты устройств от неправильной полярности включения, защиты входов схем от перегрузки, защиты ключей от пробоя ЭДС самоиндукции, возникающей при выключении индуктивной нагрузки и другого.
Два входа защищены диодными цепочками. Внизу — трёхвыводная защитная диодная сборка в сравнении со спичечной головкой
Для защиты входов аналоговых и цифровых схем от перегрузки используется цепочка из двух диодов, подключённых к шинам питания в обратном направлении. Защищаемый вход подключается к средней точке этой цепочки. При нормальной работе диоды закрыты и почти не оказывают влияния на работу схемы. При уводе потенциала входа за пределы питающего напряжения один из диодов открывается и шунтирует вход схемы, ограничивая таким образом допустимый потенциал входа диапазоном в пределах питающего напряжения плюс прямое падение напряжения на диоде. Такие цепочки могут быть уже включены в состав ИС на этапе проектирования кристалла, либо предусматриваться при разработке схем узлов, блоков, устройств. Выпускаются готовые защитные сборки из двух диодов в трёхвыводных «транзисторных» корпусах.
Для сужения или расширения диапазона защиты вместо потенциалов питания необходимо использовать другие потенциалы в соответствии с требуемым диапазоном. При защите от мощных помех, возникающих на длинных проводных линиях, например, при грозовых разрядах, может потребоваться использование более сложных схем, вместе с диодами включающих в себя резисторы, варисторы, разрядники.
Диодная защита ключа, коммутирующего индуктивную нагрузку
При выключении индуктивных нагрузок (таких как реле, электромагниты, магнитные пускатели, электродвигатели) возникает ЭДС самоиндукции:
E i = − L d I d t {displaystyle {mathcal {E}}_{i}=-L{frac {dI}{dt}}},
где
- L {displaystyle L} — индуктивность;
- I {displaystyle I} — ток через индуктивность;
- t {displaystyle t} — время.
ЭДС самоиндукции препятствует уменьшению силы тока через индуктивность и «стремится» поддержать ток на прежнем уровне. При выключении тока энергия магнитного поля, созданного индуктивностью, должна где-то рассеяться. Магнитное поле, создаваемое индуктивной нагрузкой, обладает энергией:
W = L I 2 2 {displaystyle W={frac {LI^{2}}{2}}},
где
- L {displaystyle L} — индуктивность;
- I {displaystyle I} — ток через индуктивность.
Таким образом, после отключения индуктивность сама становится источником тока и напряжения, а возникающее на закрытом ключе напряжение может достигать высоких значений и приводить к искрению и обгоранию контактов механических и пробою полупроводниковых ключей поскольку в этих случаях энергия будет рассеиваться непосредственно на само́м ключе. Диодная защита является простой и одной из широко распространённых схем, позволяющих защитить ключи с индуктивной нагрузкой. Диод включается параллельно катушке так, что в рабочем состоянии диод закрыт. При отключении тока возникающая ЭДС самоиндукции направлена против ранее приложенного к индуктивности напряжения; эта противо-ЭДС открывает диод; ранее шедший через индуктивность ток продолжает течь через диод и энергия магнитного поля рассеется на нём, не вызывая повреждения ключа.
В схеме защиты с только одним диодом напряжение на катушке будет равным падению напряжения на диоде в прямом направлении — порядка 0,7-1,2 В, в зависимости от величины тока. Из-за малости этого напряжения ток будет спадать довольно медленно, и для ускорения выключения нагрузки может потребоваться использование более сложной защитной схемы: стабилитрон последовательно с диодом, диод в комбинации с резистором, варистором или резисторно-ёмкостной цепочкой.
Диодные переключатели
Диодные переключатели применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала — с помощью конденсаторов и индуктивностей.
Диодная искрозащита
Основная статья: Барьер искрозащиты
Этим не исчерпывается применение диодов в электронике, однако другие схемы, как правило, весьма узкоспециальны. Совершенно другую область применимости имеют специальные диоды, поэтому они будут рассмотрены в отдельных статьях.
Интересные факты
![]() |
Этот раздел представляет собой неупорядоченный список разнообразных фактов о предмете статьи. Пожалуйста, приведите информацию в энциклопедический вид и разнесите по соответствующим разделам статьи. Согласно решению Арбитражного комитета Википедии, списки предпочтительно основывать на вторичных обобщающих авторитетных источниках, содержащих критерий включения элементов в список. (27 декабря 2018) |
![]() |
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 27 декабря 2018 года. |
- В первые десятилетия развития полупроводниковой технологии точность изготовления диодов была настолько низкой, что приходилось делать «разбраковку» уже изготовленных приборов. Так, диод Д220 мог, в зависимости от фактически получившихся параметров, маркироваться и как переключательный (Д220А, Б), и как стабистор (Д220С). Радиолюбители широко использовали его в качестве варикапа.
- Диоды могут использоваться как датчики температуры.
- Диоды в прозрачном стеклянном корпусе (в том числе и современные SMD-варианты) могут обладать паразитной чувствительностью к свету (то есть радиоэлектронное устройство работает по-разному в корпусе и без корпуса, на свету). Существуют радиолюбительские схемы, в которых обычные диоды используются в качестве фотодиода и даже в качестве солнечной батареи.
Примечания
- ↑ Словарь по кибернетике / Под редакцией академика В. С. Михалевича. — 2-е. — Киев: Главная редакция Украинской Советской Энциклопедии имени М. П. Бажана, 1989. — 751 с. — (С48). — 50 000 экз. — ISBN 5-88500-008-5.
- ↑ 1 2 www.yourdictionary.com: суффикс -од (ode) (недоступная ссылка с 22-05-2013 — история, копия) (англ.)
- ↑ 1 2 А. В. Баюков, А. Б. Гитцевич, А. А. Зайцев и др. Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы. Справочник / Под ред. Н. Н. Горюнова. — 2-е изд., перераб. — М.: Энергоатомиздат, 1984 год. — С. 13—31. — 744 с., ил с. — 100 000 экз.
- ↑ Diode Архивировано 26 апреля 2006 года.
- ↑ About JEDEC. Jedec.org. Проверено 22 сентября 2008. Архивировано 4 августа 2012 года.
- ↑ EDAboard.com. News.elektroda.net (10 июня 2010). Проверено 6 августа 2010. Архивировано 4 августа 2012 года.
- ↑ I.D.E.A. Transistor Museum Construction Projects Point Contact Germanium Western Electric Vintage Historic Semiconductors Photos Alloy Junction Oral History. Semiconductormuseum.com. Проверено 22 сентября 2008. Архивировано 4 августа 2012 года.
- ↑ Классификация и испытание грозозащит. «Сетевые решения», издательство «Нестор» (15 апреля 2004). — (Защита оборудования Ethernet). Проверено 27 апреля 2012. Архивировано 30 мая 2012 года.
- ↑ Некоторые вопросы использования газоразрядных приборов для защиты линий Ethernet. «Сетевые решения», издательство «Нестор» (12 мая 2008). Проверено 27 апреля 2012. Архивировано 30 мая 2012 года.
- ↑ Барнс Дж. Электронное конструирование: Методы борьбы с помехами = John R. Barnes. Electronic System Design: Interference And Noise Control Techniques. — Prentice-Hall, 1987. — Пер. с англ. — М.: Мир, 1990. — С. 78–85. — 238 с. — 30 000 экз. — ISBN 5-03-001369-5 (рус.), ISBN 0-13-252123-7 (англ.).
Маркировка
Нужно заметить, что особенностью всех устройств является то, что на каждом из элементов имеется специальное обозначение. Благодаря им, можно узнать характеристику диода, если он относится к полупроводниковому типу. Корпус состоит из четырех составных частей. Теперь следует рассмотреть маркировку.
На первом месте всегда будет стоять буква или цифра, которая говорит о материале, из которого изготовлен диод. Таким образом, параметры диода будет узнать несложно. Если указана буква Г, К, А или И, то это означает германий, кремний, арсенид галлия и индий. Иногда вместо них могут указываться цифры от 1 до 4 соответственно.
На втором месте будет указываться тип. Он также имеет разные значения и свои характеристики. Могут быть выпрямительные блоки (Ц), варикапы (В), туннельные (И) и стабилитроны (С), выпрямители (Д), сверхвысокочастотные (А).
Предпоследнее место занимает цифра, которая будет указывать на область, в которой применяется диод.
На четвертом месте будет установлено число от 01 до 99. Оно будет указывать на номер разработки. Помимо этого, на корпус производитель может наносить различные обозначения. Однако, как правило, их используют только на устройствах, создаваемых для определенных схем.
Для удобства диоды могут маркироваться графическими изображениями. Речь идет о точках, полосках. Логики в данных рисунках нет никакой. Поэтому для того, чтобы понять, что имел в виду производитель, придется ознакомиться с инструкцией.
Устройство
Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.
Фото – полупроводниковый диод
Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:
Фото – обозначение диода
Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.
Основные преимущества полупроводникового диода:
- Полная взаимозаменяемость;
- Отличные пропускные параметры;
- Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.
Маркировка полупроводникового диода представляет собой аббревиатуру от основных параметров устройства. Например, КД196В – кремниевый диод с напряжением пробоя до 0,3 В, напряжением 9,6, модель третьей разработки.
Исходя из этого:
- Первая буква определяет материал, из которого изготовлен прибор;
- Наименование устройства;
- Цифра, определяющая назначение;
- Напряжение прибора;
- Число, которое определяет прочие параметры (зависит от типа детали).
Видео: применение диодов
Принцип работы
Полупроводниковые или выпрямительные диоды имеют довольно простой принцип работы. Как мы уже говорили, диод изготовлен из кремния таким образом, что один его конец p-типа, а другой конец типа n. Это означает, что оба контакта имеют различные характеристики. На одном наблюдается избыток электронов, в то время как другой имеет избыток отверстий. Естественно, в устройстве есть участок, в котором все электроны заполняют определенные пробелы. Это означает, что внешние заряды отсутствуют. В связи с тем, что эта область обедняется носителями заряда и известна как объединяющий участок.
Фото – принцип работы
Несмотря на то, что объединяющий участок очень мал, (часто его размер составляет несколько тысячных долей миллиметра), ток не может протекать в нем в обычном режиме. Если напряжение подается так, что площадь типа p становится положительной, а тип n, соответственно, отрицательной, отверстия переходят к отрицательному полюсу и помогают электронам перейти через объединяющий участок. Точно так же электроны движутся к положительному контакту и как бы обходят объединительный. Несмотря на то, что все частицы движутся с разным зарядом в разном направлении, в итоге они образуют однонаправленный ток, что помогает выпрямить сигнал и предупредить скачки напряжения на контактах диода.
Если напряжение прикладывается к полупроводниковому диоду в противоположном направлении, ток не будет проходить по нему. Причина заключается в том, что отверстия привлекаются отрицательным потенциалом, который находится в области р-типа. Аналогично электроны притягиваются к положительному потенциалу, который применяется к области n-типа. Это заставляет объединяющий участок увеличиваться в размере, из-за чего поток направленных частиц становится невозможным.
Фото – характеристики полупроводников
ВАХ-характеристики
Вольт амперная характеристика полупроводникового диода зависит от материала, из которого он изготовлен и некоторых параметров. Например, идеальный полупроводниковый выпрямитель или диод имеет следующие параметры:
- Сопротивление при прямом подключении – 0 Ом;
- Тепловой потенциал – VG = +-0,1 В.;
- На прямом участке RD > rD, т. е. прямое сопротивление больше, чем дифференциальное.
Если все параметры соответствуют, то получается такой график:
Фото – ВАХ идеального диода
Такой диод использует цифровая электротехника, лазерная индустрия, также его применяют при разработке медицинского оборудования. Он необходим при высоких требованиях к логическим функциям. Примеры – лазерный диод, фотодиод.
На практике, эти параметры очень отличаются от реальных. Многие приборы просто не способны работать с такой высокой точностью, либо такие требования не нужны. Эквивалентная схема характеристики реального полупроводника демонстрирует, что у него есть серьезные недостатки:
Фото – ВАХ в реальном полупроводниковом диоде
Данная ВАХ полупроводникового диода говорит о том, что во время прямого включения, контакты должны достигнуть максимального напряжения. Тогда полупроводник откроется для пропуска электронных заряженных частиц. Эти свойства также демонстрируют, что ток будет протекать нормально и без перебоев. Но до момента достижения соответствия всех параметров, диод не проводит ток. При этом у кремниевого выпрямителя вольтаж варьируется в пределах 0,7, а у германиевого – 0,3 Вольт.
Работа прибора очень зависит от уровня максимального прямого тока, который может пройти через диод. На схеме он определяется ID_MAX. Прибора так устроен, что во время включения прямым путем, он может выдержать только электрический ток ограниченной силы. В противном случае, выпрямитель перегреется и перегорит, как самый обычный светодиод. Для контроля температуры используются разные виды устройств. Естественно, некоторые из них влияют на проводимость, но зато продлевают работоспособность диода.
Еще одним недостатком является то, что при пропуске переменного тока, диод не является идеальным изолирующим устройством. Он работает только в одном направлении, но всегда нужно учитывать ток утечки. Его формула зависит от остальных параметров используемого диода. Чаще всего схемы его обозначают, как IOP. Исследование независимых экспертов установило, что германиевые пропускают до 200 µА, а кремниевые до 30 µА. При этом многие импортные модели ограничиваются утечкой в 0.5 µА.
Фото – отечественные диоды
Все разновидности диодов поддаются напряжению пробой. Это свойство сети, которое характеризуется ограниченным напряжением. Любой стабилизирующий прибор должен его выдерживать (стабилитрон, транзистор, тиристор, диодный мост и конденсатор). Когда внешняя разница потенциалов контактов выпрямительного полупроводникового диода значительно выше ограниченного напряжения, то диод становится проводником, в одну секунду снижая сопротивление до минимума. Назначение устройства не позволяет ему делать такие резкие скачки, иначе это исказить ВАХ.