- Коррозия металлов
- Ржавчина
- Химические реакции
- Причины ржавления
- Происходящие реакции
- Предотвращение ржавления
- Гальванизация
- Катодная защита
- Лакокрасочные и другие защитные покрытия
- Покрытие слоем металла
- Воронение
- Снижение влажности
- Ингибиторы
- Экономический эффект
- «Коррозия металлов и меры её предупреждения.»
- Виды коррозии металлов
- Химическая коррозия металлов
- Электрохимическая коррозия металлов
- Методы защиты от коррозии металла
- Коррозия
- Классификация видов коррозии
- Коррозия металлов
- Типы коррозии
- Электрохимическая коррозия
- Химическая коррозия
- Виды коррозии
- Борьба с коррозией
- Газотермическое напыление
- Термодиффузионное цинковое покрытие
- Кадмирование
- Хромирование
- Экономический ущерб от коррозии
- Примечания
Коррозия металлов
Коррозия – это самопроизвольный окислительно-восстановительный процесс разрушения металлов и сплавов вследствие взаимодействия с окружающей средой.
Различают два вида коррозии – химическую и электрохимическую. Химическая коррозия обусловлена взаимодействием металлов с веществами, содержащимися в окружающей среде. В производственных условиях такими веществами, помимо О2, являются SO2, CO2, H2S, NH3 и др.
Химическую коррозию, обусловленную взаимодействием металлов с газами, называют газовой. Основной вклад в газовую коррозию металла вносит кислород воздуха. Различные металлы обладают различной устойчивостью по отношению к О2. Некоторые металлы (Al, Cr, Zn, Pb, Sn) образуют на воздухе плотные пленки оксидов, не разрушающиеся при изгибе или нагревании. Такие пленки защищают металл от дальнейшего доступа к нему газов и жидкостей, и процесс коррозии резко замедляется. Оксидные пленки других металлов (например, Fe) представляют собой рыхлые, пористые, механически непрочные образования. Они не предохраняют металл от доступа к нему газов и жидкостей. Поэтому такие металлы корродируют особенно быстро.
Процесс химической коррозии Fe схематически можно представить следующими уравнениями:
2Fe + O2=2FeO
4Fe + 3O2 = 2Fe2O3
3Fe + 2O2 =FeO · Fe2O3
4Fe + 3O2 +6H2O=4Fe(OH)3
Fe(OH)3=t H2O+FeOOH (ржавчина)
Однако наибольший вред приносит не химическая, а электрохимическая коррозия, связанная с переходом электронов от одних участков металла к другим. Химическая коррозия сопровождает электрохимическую и усиливает ее.
Сущность электрохимической коррозии
Металлы обычно содержат примеси других металлов и неметаллов. При соприкосновении таких металлов с электролитом (которым может служить Н2О, адсорбированная из воздуха, поскольку в ней как правило имеются ионы растворенных веществ) на поверхности металла возникает множество микрогальванических пар. В этих парах атомы более активного металла (обычно Fe) играют роль анода, а атомы менее активного – роль катода.
На катоде идет процесс восстановления молекул О2 в нейтральной и щелочной средах, или ионов Н+ – в кислой среде.
На аноде происходит окисление атомов металла, из которых состоит анод, с образованием катионов Men+.
Последние переходят в электролит (растворение анода) и соединяются с ионами ОН–, с образованием гидроксида Me(OH)n и других продуктов. Называемых ржавчиной. В результате металл, играющий роль анода, разрушается.
Скорость электрохимической коррозии тем больше, чем дальше друг от друга расположены металлы в ряду напряжений, и чем выше температура окружающей среды.
Чистые металлы устойчивы к коррозии. Однако, так ка абсолютно чистым металлов нет, а также вследствие того, что гальваническая пара может быть образована отдельными участками одного и того же металла, находящимися в различных условиях (под разными электролитами или под одним и тем же электролитом разной концентрации), то электрохимическая коррозия имеет место всегда при соприкосновении металла с электролитом (атмосферной влагой).
Роль катода при электрохимической коррозии могут выполнять не только менее активные металлы, но и примеси неметаллов, способных принимать электроны.
Коррозия – процесс поверхностный и при отсутствии трещин внутри металла развиваться не может. Поэтому одним из способов защиты от коррозии является нанесение на поверхность металла металлических и неметаллических покрытий.
В качестве металлических покрытий используются пленки Au, Ag, Ni, Cr, Zn и других металлов, которые мало подвергаются коррозии из-за своей индифферентности или по причине образования прочных оксидных пленок. Некоторые из этих металлов (Au, Ag, Ni, Cr), помимо защитной, выполняют и эстетическую – придают изделиям приятный внешний вид.
Различают два вида металлических покрытий – анодное и катодное. Покрытие называется
- анодным, если оно изготовлено из металла более активного, чем защищаемый;
- катодным, если изготовлено из менее активного металла.
Примером анодных покрытий для изделий из железа являются пленки из Cr, Zn, примером катодных – пленки из Ni, Sn, Ag, Au. Катодные покрытия не защищают металлы в случае нарушения их целостности (трещины, царапины), так как при наличии электролита возникает гальваническая пара, роль растворимого анода в которой играет защищаемый металл.
Неметаллические покрытия также делятся на два вида: неорганические и органические. В качестве органических покрытий используются пленки лаков, красок, пластмасс, резины, битума, в качестве неорганических – эмали.
Протекторная защита заключается в соединении защищаемого изделия проводником с протектором – пластиной из более активного металла (Al, Mg, Zn). В процессе коррозии протектор служит анодом и разрушается, предохраняя от коррозии металлическое изделие или конструкцию.
Электрохимическая (катодная) защита заключается в соединении защищаемого изделия с катодом внешнего источника тока, вследствие чего изделие становится катодом. Анодом служит вспомогательный, обычно стальной, электрод (кусок металла), который и разрушается в процессе коррозии.
Ржавчина
Цвета ржавчины У этого термина существуют и другие значения, см. Ржавчина (значения).
Ржа́вчина является общим термином для определения оксидов железа. В разговорной речи это слово применяется к красным окислам, образующимся в ходе реакции железа с кислородом в присутствии воды или влажного воздуха. Есть и другие формы ржавчины, например, продукт, образующийся в ходе реакции железа с хлором при отсутствии кислорода. Такое вещество образуется, в частности, в арматуре, используемой в подводных бетонных столбах, и называют его зелёной ржавчиной. Несколько видов коррозии различимы зрительно или с помощью спектроскопии, они образуются при разных внешних условиях. Ржавчина состоит из гидратированного оксида железа(III) Fe2O3·nH2O и метагидроксида железа (FeO(OH), Fe(OH)3). При наличии кислорода и воды и достаточном времени любая масса железа в конечном итоге преобразуется полностью в ржавчину и разрушается. Поверхность ржавчины не создаёт защиту для нижележащего железа, в отличие от образования патины на медной поверхности.
Ржавчиной, как правило, называют продукт коррозии только железа и его сплавов, таких как сталь. Многие другие металлы тоже подвергаются коррозии, но именно окислы железа обычно называют ржавчиной.
Химические реакции
Толстый слой ржавчины на звеньях цепи возле моста Золотые Ворота в Сан-Франциско. Цепь постоянно подвергается воздействию сырости и солёных брызг, вызывающих разрушение поверхности, растрескивание и шелушение металла.
Причины ржавления
Если железо, содержащее какие-либо добавки и примеси (например, углерод), находится в контакте с водой, кислородом или другим сильным окислителем и/или кислотой, то оно начинает ржаветь. Если при этом присутствует соль, например, имеется контакт с солёной водой, коррозия происходит быстрее в результате электрохимических реакций. Чистое железо относительно устойчиво к воздействию чистой воды и сухого кислорода. Как и у других металлов, например, у алюминия, плотно приставшее оксидное покрытие на железе (слой пассивации) защищает основную массу железа от дальнейшего окисления. Превращение же пассивирующего слоя оксида железа в ржавчину является результатом комбинированного действия двух реагентов, как правило, кислорода и воды. Другими разрушающими факторами являются диоксид серы и углекислый газ в воде. В этих агрессивных условиях образуются различные виды гидроксида железа. В отличие от оксидов железа, гидроксиды не защищают основную массу металла. Поскольку гидроксид формируется и отслаивается от поверхности, воздействию подвергается следующий слой железа, и процесс коррозии продолжается до тех пор, пока всё железо не будет уничтожено, или в системе закончится весь кислород, вода, диоксид углерода или диоксид серы.
Происходящие реакции
Покрытый ржавчиной и грязью болт. Заметна точечная коррозия и постепенная деформация поверхности, вызванная сильным окислением.
Ржавление железа — это электрохимический процесс, который начинается с переноса электронов от железа к кислороду. Скорость коррозии зависит от количества имеющейся воды, и ускоряется электролитами, о чём свидетельствуют последствия применения дорожной соли на коррозию автомобилей. Ключевой реакцией является восстановление кислорода:
O2 + 4 e− + 2 H2O → 4 OH−
Поскольку при этом образуются гидроксид-анионы, этот процесс сильно зависит от присутствия кислоты. Действительно, коррозия большинства металлов кислородом ускоряется при понижении pH. Обеспечение электронов для вышеприведённой реакции происходит при окисления железа, которое может быть описано следующим образом:
Fe → Fe2+ + 2 e−
Следующая окислительно-восстановительная реакция происходит в присутствии воды и имеет решающее значение для формирования ржавчины:
4 Fe2+ + O2 → 4 Fe3+ + 2 O2−
Кроме того, следующие многоступенчатые кислотно-щелочные реакции влияют на ход формирования ржавчины:
Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2 H+ Fe3+ + 3 H2O ⇌ Fe(OH)3 + 3 H+
что приводит к следующим реакциям поддержания баланса дегидратации:
Fe(OH)2 ⇌ FeO + H2O Fe(OH)3 ⇌ FeO(OH) + H2O 2 FeO(OH) ⇌ Fe2O3 + H2O
Из приведённых выше уравнений видно, что формирование продуктов коррозии обусловлено наличием воды и кислорода. С ограничением растворённого кислорода на передний план выдвигаются железо(II)-содержащие материалы, в том числе FeO и чёрный магнит (Fe3O4). Высокая концентрация кислорода благоприятна для материалов с трёхвалентным железом, с номинальной формулой Fe(OH)3-xOx/2. Характер коррозии меняется со временем, отражая медленные скорости реакций твёрдых тел.
Кроме того, эти сложные процессы зависят от присутствия других ионов, таких как Ca2+, которые служат в качестве электролита, и таким образом, ускоряют образование ржавчины, или в сочетании с гидроксидами и оксидами железа образуют различные осадки вида Ca-Fe-O-OH.
Более того, цвет ржавчины можно использовать для проверки наличия ионов Fe2+, которые меняют цвет ржавчины с жёлтого на синий.
Предотвращение ржавления
Отслаивающаяся краска обнажает участки ржавой поверхности листового металла.
Ржавчина является проницаемой для воздуха и воды, поэтому внутрилежащее железо продолжает разъедаться. Предотвращение ржавчины, следовательно, требует покрытия, которое исключает образование ржавчины. На поверхности нержавеющей стали образуется пассивирующий слой оксида хрома(III). Подобное проявление пассивации происходит с магнием, титаном, цинком, оксидом цинка, алюминием, полианилином и другими электропроводящими полимерами.
Гальванизация
Хорошим подходом к предотвращению ржавчины является метод гальванизации, который обычно заключается в нанесении на защищаемый объект слоя цинка либо методом горячего цинкования, либо методом гальванотехники. Цинк традиционно используется, потому что он достаточно дёшев, обладает хорошей адгезией к стали и обеспечивает катодную защиту на стальную поверхность в случае повреждения цинкового слоя. В более агрессивных средах (таких, как солёная вода), предпочтительнее кадмий. Гальванизация часто не попадает на швы, отверстия и стыки, через которые наносилось покрытие. В этих случаях покрытие обеспечивает катодную защиту металла, где оно выступает в роли гальванического анода, на который прежде всего и воздействует коррозия. В более современные покрытия добавляют алюминий, новый материал называется цинк-алюм. Алюминий в покрытии мигрирует, покрывая царапины и, таким образом, обеспечивая более длительную защиту. Этот метод основан на применении оксидов алюминия и цинка, защищающих царапины на поверхности, в отличие от процесса оксидизации, как в случае применения гальванического анода. В некоторых случаях при очень агрессивных средах или длительных сроках эксплуатации применяются одновременно и гальванизация цинком, и другие защитные покрытия, чтобы обеспечить надёжную защиту от коррозии.
Катодная защита
Основная статья: Катодная защита
Катодная защита является методом, используемым для предотвращения коррозии в скрытых под землёй или под водой структурах путём подачи электрического заряда, который подавляет электрохимические реакции. Если её правильно применять, коррозия может быть остановлена полностью. В своей простейшей форме это достигается путём соединения защищаемого объекта с протекторным анодом, в результате чего на поверхности железа или стали происходит только катодный процесс. Протекторный анод должен быть сделан из металла с более отрицательным электродным потенциалом, чем железо или сталь, обычно это цинк, алюминий или магний.
Лакокрасочные и другие защитные покрытия
От ржавчины можно предохранять с помощью лакокрасочных и других защитных покрытий, которые изолируют железо из окружающей среды. Большие поверхности, поделённые на секции, как например, корпуса судов и современных автомобилей, часто покрывают продуктами на основе воска. Такие средства обработки содержат также ингибиторы коррозии. Покрытие стальной арматуры бетоном (железобетон) обеспечивает некоторую защиту стали в среде с высоким рН. Однако коррозия стали в бетоне всё ещё является проблемой.
Покрытие слоем металла
Ржавчина может полностью разрушить железо. Обратите внимание на гальванизацию незаржавевших участков.
- Оцинковка (оцинкованное железо/сталь): железо или сталь покрываются слоем цинка. Может использоваться метод горячего цинкования или метод цинкового дутья.
- Лужение: мягкая листовая сталь покрывается слоем олова. В настоящее время практически не используется из-за высокой стоимости олова.
- Хромирование: тонкий слой хрома наносится электролитическим способом на сталь, обеспечивая как защиту от коррозии, так и яркий, полированный внешний вид. Часто используется в блестящих компонентах велосипедов, мотоциклов и автомобилей.
Воронение
Воронение — это способ, который может обеспечить ограниченную устойчивость к коррозии для мелких предметов из стали, таких как огнестрельное оружие и др. Способ состоит в получении на поверхности углеродистой или низколегированной стали или чугуна слоя окислов железа толщиной 1-10 мкм. Для придания блеска, а также для улучшения защитных свойств окисной плёнки, её пропитывают минеральным или растительным маслом.
Снижение влажности
Ржавчины можно избежать, снижая влажность окружающего железо воздуха. Этого можно добиться, например, с помощью силикагеля.
Ингибиторы
Ингибиторы коррозии, как, например, газообразные или летучие ингибиторы, можно использовать для предотвращения коррозии в закрытых системах. Некоторые ингибиторы коррозии чрезвычайно ядовиты. Одним из лучших ингибиторов выступают соли технециевой кислоты.
Экономический эффект
Основная статья: КоррозияРазрушенный Серебряный мост, вид со стороны Огайо.
Ржавчина вызывает деградацию изделий и конструкций, изготовленных из материалов на основе железа. Поскольку ржавчина имеет гораздо больший объём, чем исходное железо, её нарост ведёт к быстрому разрушению конструкции, усиливая коррозию на прилегающих к нему участках — явление, называемое поеданием ржавчиной. Это явление стало причиной разрушения моста через реку Мианус (штат Коннектикут, США) в 1983 году, когда подшипники подъёмного механизма полностью проржавели изнутри. В результате этот механизм зацепил за угол одной из дорожных плит и сдвинул её с опор. Ржавчина была также главной причиной разрушения Серебряного моста в Западной Вирджинии в 1967 году, когда стальной висячий мост рухнул меньше, чем за минуту. Погибли 46 водителей и пассажиров, находившихся в то время на мосту.
Мост Кинзу после разрушения.
Мост Кинзу в штате Пенсильвания был снесён смерчем в 2003 году в значительной степени потому, что центральные опорные болты, соединяющие сооружение с землёй, проржавели, из-за чего мост держался лишь под действием силы тяжести.
Кроме того, коррозия покрытых бетоном стали и железа может вызвать раскалывание бетона, что создает серьёзные конструкторские трудности. Это один из наиболее распространённых отказов железобетонных мостов.
> См. также
- Коррозия
- Нержавеющая сталь
- Сталь кортеновская
> Примечания
«Коррозия металлов и меры её предупреждения.»
Тема урока: Коррозия металлов и меры её предупреждения.
Задачи урока:
1.Образовательная: сформировать представление о коррозии металлов как самопроизвольном окислительно-восстановительном процессе, её значении, причинах, механизме и способах защиты; показать влияние на скорость коррозии таких факторов, как природа веществ, температура и присутствие катализатора (ингибитора).
2.Развивающая:
развить умение проведения химического эксперимента с соблюдением правил техники безопасности, строить логические цепочки и выводы из наблюдений, прогнозировать решение некоторых проблем.
3.Воспитательная: совершенствовать коммуникативные умения в ходе коллективного обсуждения, продолжать формировать убеждения учащихся в необходимости привлечения средств химии к пониманию и описанию процессов, происходящих в окружающем мире.
Оборудование: компьютер, интерактивная доска , оборудование и реактивы для лабораторного эксперимента, презентация к уроку.
Методы и приемы обучения: метод проблемного изложения материала, метод поисковой беседы, исследовательский метод и сопровождение лабораторного проблемного эксперимента.
Тип урока: изучение нового материала.
Ход урока:
I. Мобилизирующий момент.
II. Проверка ЗУН:
1.Какова доля железа в земной коре: 5%
2.Минералы, содержащие железо: красный железняк, магнитный железняк, пирит
3.Где в Казахстане имеется запасы железных руд: в Торгайском железорудном бассейне,
Центр. Казахстане
4.Сколько граммов железа в теле человека: 4-5г
5.Где содержится железо в организме человека; в клетках крови
6.Болезнь, связанная с недостатком железа в крови: анемия
7.В каких продуктах большое содержание железа: в печени, мясе (кролика, индейки), крупах, чернике, персиках, икре осетровых рыб.
Задание: Из предложенных формул соединений составьте генетический ряд Fe 2+ (для первого варианта) и генетический ряд Fe 3+(для второго варианта)
Fe(OH)2, Fe, Fe(OH)2, FeCl3, Fe2O3, FeCl2, FeO
Задание: Написать уравнения химических реакций, с помощью которых можно осуществить следующие превращения:
Fe → FeCl3 →Fe(OH)3 →Fe2O3 →Fe →FeSO4 →Fe(OH)2 → FeO → Fe → Fe3O4
Задача 1. Железную пластинку массой 5 г поместили в раствор, содержащий 1,6 г сульфата меди. Найти массу пластинки после окончания реакции.
Задание: В уравнении химической реакции расставить коэффициенты методом электронного баланса: Fe2O3 + KOH + KNO3 → K2FeO4 + KNO2 + H2O
III. Объяснение материала:
31 января 1951 г. обрушился железнодорожный мост в Квебеке (Канада ), введенный в эксплуатацию в 1947 г. В 1964 г. рухнуло одно из самых высотных сооружений в мире – 400-метровая антенная мачта в Гренландии.
Из-за повреждений нефтепроводов в реки и на грунт выливается нефть.
Что же объединяет эти примеры? (разрушение металлических изделий)
Железо – элемент, всем хорошо известный. Железо используют как в чистом виде, так и в составе различных сплавов. О значении железа очень ярко сказал академик А.Е.Ферсман: «Я хочу поразить читателя и нарисовать картину того, что было бы с человеком, если бы он вдруг узнал, что все железо на поверхности земли исчезло и что его ниоткуда больше достать нельзя. Правда, он узнал бы это довольно решительным образом, ибо исчезли бы его кровать, распалась бы вся мебель, уничтожились все гвозди, обвалились потолки и уничтожилась крыша. На улицах стоял бы ужас разрушения: ни рельсов, ни вагонов, ни паровозов, ни автомобилей, ни экипажей, ни решеток не оказалось бы, даже камни мостовой превратились бы в глинистую труху, а растения начали бы чахнуть и гибнуть без живительного металла. Разрушение ураганом прошло бы по всей Земле, и гибель человека сделалась бы неминуемой».
О коррозии упоминается даже в Ветхом Завете: «не сотвори себе кумира на земле, ибо ржавчина и моль его разрушат»
Хвастается новенький металл:
«Как силен я, смел и как удал! Неподвластен никакой угрозе Кроме рыжей крысы с именем «коррозия».
Итак, тема нашего урока: «Коррозия металлов». Слово коррозия происходит от латинского «corrodere», что означает разъедать.
Коррозия – самопроизвольное разрушение металлов вследствие химического или электрохимического взаимодействия их с окружающей средой. «Поедают» металл все вещества, которые могут с ним реагировать: кислород и вода, кислоты и щелочи, растворы солей (морская вода).
Аппетит у «металлоедов» чудовищный – ежегодно они уносят до 30% производимого металла; 2/3 этого количества в виде металлолома возвращаются в промышленность, а 1/3 теряется безвозвратно. Но убытки этим не ограничиваются. ? Какие еще расходы возникают в результате коррозии?
Стоимость деталей и конструкций, вышедших из строя вследствие коррозии, выше стоимости самого металла. По причине коррозии случаются аварии. Коррозия увеличивает расходы на ремонт машин, на бензин. Значительные средства требует профилактика коррозии. Таким образом, коррозия порождает своеобразную цепную реакцию расходов, которые растут как снежный ком, причем косвенные расходы во много раз превышают прямые.
В зависимости от вызываемых коррозией повреждений поверхности металлов различают следующие ее виды:
равномерную (сплошную),
язвенную,
точечную (питтинг).
Как вы думаете какой вид коррозии самый опасный?Почему? (Питтинг – большая глубина поражения и малая площадь)
По механизму протекания коррозия делиться на два вида: химическую и электро-химическую.
Коррозия — это окислительно-восстановительный процесс, при котором атомы металлов переходят в ионы (идет процесс окисления)
Химическая коррозия – разрушение металла при взаимодействии его с сухими газами или жидкостями, не проводящими электрический ток (например, нефть).
Ей подвергается арматура печей, детали двигателей внутреннего сгорания и аппаратура химической промышленности. При этом происходит окислительно-восстановительные реакции, в ходе которой металл окисляется, а присутствующий в среде окислитель восстанавливается, электроны переходят от металла к окислителю без возникновения в цепи электрического тока.
Демонстрация. Прокалим медную проволоку на воздухе. Что наблюдаете.
Уч-ся: изменение окраски – появление черного налета, значит произошла химическая реакция.
При взаимодействии меди с кислородом идет реакция:
2Cu + O2 → 2CuO (запись в тетради и на доске)
Cu0 – 2e → Cu2+ | 2| — восстановитель, процесс окисления
O20 + 4e → 2O2- | 1| — окислитель, процесс восстановления
Некоторые металлы на воздухе покрываются плотной оксидной пленкой, например алюминий, и металл не корродирует. Что не скажешь о железе – ржавчина не прилегает к металлу, рыхлая, и металл может разрушиться весь. Оксидная пленка оксида железа содержит: FeO, Fe2O3, Fe3O4.
Мы рассмотрели с вами химическую коррозию, а теперь рассмотрим электрохимическую.
Электрохимическая коррозия – это разрушение металлов при контакте двух металлов в воде или среде другого электролита.
В данном случае наряду с химическим процессом идет электрический – перенос электрона, т.е. возникает электрический ток. Этот вид приносит большой вред.
Коррозия металлов в нейтральной и (или) щелочной среде
А(+) Fe0 – 2e → Fe2+
К(-) O2+2H2O+4e →4OH-
2Fe0 + O2 + 2H2O→ 2 Fe(OH)2 4Fe(OH)2 + O2 + 2H2O→ 4 Fe(OH)3
Вывод: Кислород – окислитель
Коррозия металлов в кислой среде
Запись в тетрадях:
А(+) Fe0 – 2e → Fe2+
К(-) 2H+ + 2e → H20
Fe0 + 2H+ → Fe2+ + H20
Вывод: Окислителем являются ионы водорода.
Скорость электрохимической коррозии зависит от природы примесей в металле, природы электролита .Электрохимическая коррозия происходит тем быстрее, чем больше расстояние между металлами в ряду напряжения металлов.
Очень важен вопрос об условиях, при которых коррозия протекает особенно интенсивно
Перед вами четыре пронумерованных стакана. Сейчас каждая группа получит стакан с заложенным опытом и, внимательно рассмотрев результаты, ответит на поставленные вопросы. После этого каждая группа даст пояснения своим наблюдениям и сделает соответствующий вывод.
Гвоздь в дистиллированной воде.
Гвоздь в растворе хлорида натрия.
Гвоздь в контакте с медью растворе соли.
Гвоздь в контакте с цинком в растворе соли.
Опыт №1. Железный гвоздь + чистая вода.
Задания к опыту.
Внимательно рассмотрите железный гвоздь.
Какие изменения на поверхности гвоздя вы наблюдаете?
Насколько сильно корродировал гвоздь в чистой воде?
Сделайте вывод о скорости коррозии в чистой воде.
Опыт №2. Железный гвоздь + раствор хлорида натрия NaCl.
Задания к опыту.
Внимательно рассмотрите железный гвоздь.
Какие изменения на поверхности гвоздя вы наблюдаете?
Насколько сильно корродировал гвоздь в растворе хлориде натрия?
Что из себя представляет по внешнему виду ржавчина?
Сделайте вывод о скорости коррозии в растворе соли.
Опыт №3. Железный гвоздь + медная проволока + раствор NaCl.
Задания к опыту.
Внимательно рассмотрите железный гвоздь.
Какие изменения на поверхности гвоздя вы наблюдаете?
Рассмотрите медную проволоку, произошли ли с ней какие либо изменения?
Насколько сильно корродировал гвоздь в контакте с медной проволокой?
Почему из двух металлов в первую очередь корродирует железо?
Сделайте вывод о скорости коррозии железа при контакте его с медью.
Опыт №4. Железный гвоздь + цинковая пластинка + раствор NaCl
Задания к опыту.
Внимательно рассмотрите железный гвоздь.
Какие изменения на поверхности гвоздя вы наблюдаете?
Какие изменения произошли с цинковой пластинкой?
Какой из металлов (железо или цинк) подвергся коррозии?
Почему железо осталось не измененным?
Сделайте вывод о скорости коррозии железа при контакте его с цинком.
Наблюдения:
1. Железо слабо корродировало, в чистой воде коррозия идет медленнее, т.к. вода слабый электролит.
2. Железо корродирует сильнее, т. к. хлорид натрия более сильный электролит и это увеличивает скорость коррозии.
3. Скорость коррозии велика. Образовалось много ржавчины. Железо сильно корродирует в контакте с менее активным металлом – медью.
В данном опыте образовалась активная гальваническая пара. Fe2+ переходит в раствор. Избыток электронов переходит от железа к меди в местах контакта и восстанавливает на ней атомы кислорода в виде О2 до ОН- (в плёнке электролита на металле).
Анод(Fe): Fe0 — 2ē → Fe2+
Катод(Cu): 4ē + O2 + 2H2O → 4OH-
OH- образует с ионами Fe2+ гидрат закиси железа
Fe2+ + 2ОН- → Fe(ОН)2↓, который окисляется до гидрата окиси железа (ІІІ):
4Fe(OH)2 + 2H2O + O2 → 4Fe(OH)3↓
Последний можно наблюдать в виде ржавых отложений
4. Наблюдаем коррозию не железа, а цинка, т.к. железо в контакте с более активным металлом даже в сильно коррозионной среде – растворе хлорида натрия – не корродирует, остается защищенным до тех пор, пока не прокорродирует весь цинк. Возникает гальваническая пара, причём цинк переходит в раствор в виде ионов. На железе образуются гидроксильные группы. Цинк в данной гальванической паре, как более активный металл, будет являться анодом и в присутствии среды, проводящей электрический ток, будет разрушаться, железо же не ржавеет. Поэтому оцинкованные ведра сравнительно недороги и служат долго.
Анод(Zn): Zn0 — 2ē → Zn2+
Катод(Fe): 4ē + O2 + 2H2O → 4OH-
Гидроксильные ионы, взаимодействуя с ионами цинка, образуют гидрат окиси цинка в виде белого нерастворимого осадка:
Zn2+ + 2OH- → Zn(OH)2↓
Способы защиты от коррозии
1. легирование металлов, т.е. получение сплавов. Если хром добавить в сталь, когда она варится, получается очень твердый сплав, из которого можно делать и танки, и броню для боевых кораблей, и стволы пушек. А если побольше хрома прибавить, тогда получится сталь для подводных лодок. Она не ржавеет и называется нержавеющей сталью. Если в сталь добавить никель, то такую сталь ржавчина никогда не съест. Нержавеющая сталь, содержащая хром или никель, вероятно, есть у многих дома. Из такой стали делают ложки, вилки, ножи. Они довольно легкие, по цвету немного темнее серебра.
2. нанесение на поверхность металлов защитных пленок: лака, краски, эмали, других металлов.
Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а из второго изготавливают консервные банки. И то и другое получают главным образом протягиванием листа железа через расплав соответствующего металла.
Покрытия из цинка и олова (так же, как и других металлов) защищают железо от коррозии при сохранении сплошности. При нарушении покрывающего слоя (трещины, царапины) коррозия изделия протекает даже более интенсивно, чем без покрытия. Это объясняется «работой» гальванического элемента железо – цинк и железо – олово.
3. введение ингибиторов (замедлителей коррозии) Известно более 5 тыс. ингибиторов
Проведение эксперимента. В пробирку на 1/5 объема налили разбавленную серную кислоту, затем поместили в нее железные стружки. Довели до кипения. Наблюдали выделение пузырьков газа водорода.
Затем в эту же пробирку добавили ингибитор уротропин (1 измельченную таблетку). Уротропин можно заменить тиомочевиной или сухим горючим. Реакция с кислотой прекратилась.
4. протекторный метод защиты от коррозии. Протекторная защита – это электрохимический способ защиты металлов. Он заключается в том, что защищаемый металл, например железо, соединяют с протектором – более активным металлом (цинк, алюминий, магний). Чтобы спасти стальные конструкции, «приносят в жертву» магниевые блоки, расположенные во влажном грунте на некотором расстоянии друг от друга. Примерно также защищают цинковыми пластинами стальные корпуса морских судов. При контакте двух металлов протектор, сделанный из более активного металла будет разрушаться, защищая конструкцию. Протекторную защиту используют для металлических конструкций, соприкасающихся с морской и речной водой. В быту — пример электрохимической защиты — это оцинкованное ведро. Цинковый слой может иметь дефекты, царапины, он может даже не покрывать полностью все ведро – защитное действие все равно будет обеспечено.
Эйфелеву башню красили 18 раз, отчего её масса 9000 т каждый раз увеличивается на 70 т.
IV.Закрепление:
1.Отметьте верные высказывания:
1) Корродирует только железо.
2) Причиной коррозии является только вода.
3) Коррозия – окислительно-восстановительный процесс.
4) Чтобы защитить металл от коррозии, надо убрать одно из условий возникновения коррозии.
5) При повышении температуры скорость коррозии уменьшается.
2. По отдельности алюминий и титан устойчивы к действию морской воды. Почему, если они контактируют в одном изделии, например в боксе для подводной фототехники, алюминий очень быстро разрушается, и бокс протекает?
3. Более полутора тысяч лет назад в Индии была изготовлена железная колонна весом в 6,5 т, высотой 7,3 м, диаметром у основания 41,6 см, у верха 29,5 см, стоящая ныне на одной из площадей индийской столицы .Она стоит на тропическом солнце, под дождями 15 столетий, но не подверглась ни малейшей коррозии. Почему на нее не действует коррозия?
4. Иногда зубные коронки, изготовленные из различных металлов (золота и стали) и близко расположенные друг к другу, доставляют их носителям неприятнейшие болевые ощущения. С чем это связано?
5. Один из американских миллионеров, не жалея денег, решил построить самую шикарную яхту. Ее днище было обшито дорогим монель металлом (сплав 70% никеля и 30% меди), а киль, форштевень и раму руля изготовили из стали. Однако яхта еще до завершения отделочных работ вышла из строя, ни разу не побывав в море. Интересно, что яхте было дано имя «Зов моря». В чем причина недолговечности яхты?
Самостоятельная работа:
Вариант №1
Что такое коррозия? Какие факторы способствуют замедлению коррозии?
На стальной крышке поставлена медная заклепка. Что раньше разрушится — крышка или заклепка? Почему?
Вариант №2
Какие виды коррозии вам известны?
Почему луженный (покрытый оловом) железный бак на месте повреждения защитного слоя быстро разрушается?
Вариант №3
Какие факторы способствуют усилению коррозии?
Какие металлы при взаимном контакте в присутствии электролита быстрее разрушаются медь или цинк; Алюминий или железо? Почему?
Вариант №4
Перечислите способы борьбы с коррозией металлов.
Почему на оцинкованном баке, на месте царапины, цинк разрушается, а железо не ржавеет?
V. Домашнее задание: § 6.6, упр.3,4,5.
VI. Подведение итогов.
Итак, на сегодняшнем уроке мы с вами изучили один из важнейших вопросов химической промышленности – коррозию металлов. Задачей химиков было и остается выяснение сущности явлений коррозии, разработка мер, препятствующих или замедляющих ее протекание. Коррозия металлов осуществляется в соответствии с законами природы и потому ее нельзя полностью устранить, а можно лишь замедлить, на что и направлена современная химическая наука.
VII. Комментирование оценок.
Дополнительный материал по теме.
О том, сколь коварна и прожорлива коррозия, знают все автомобилисты. Двигатель порой готов еще служить верой и правдой, а кузов машины уже насквозь разъеден ржавчиной. Вот почему проблемам борьбы с коррозией ведущие автомобильные фирмы придают огромное значение. В январе 1986 г в Брюсселе проходил международный автосалон, на котором демонстрировалось более 1300 автомобилей из трех десятков стран. Всеобщее внимание привлекли машины шведской фирмы «Вольво», которая сумела существенно повысить антикоррозионную стойкость своей продукции и дает покупателям гарантию на 8 лет. Чтобы ни у кого на этот счет не возникало сомнений, фирма придумала оригинальную рекламу: на одном из ее стендов был установлен гигантский аквариум с водой, в котором, пока функционировал салон, все время находился автомобильный остов, прошедший перед этим специальную антикоррозионную обработку. «Не знаем, как насчет 8 лет, но за дни работы салона, — шутила одна из бельгийских газет, — металлическая рыбка «Вольво» не проржавела».
Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.
Можно выделить 3 признака, характеризующих коррозию:
- Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
- Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
- Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.
Виды коррозии металлов
Наиболее часто встречаются следующие виды коррозии металлов:
- Равномерная – охватывает всю поверхность равномерно
- Неравномерная
- Избирательная
- Местная пятнами – корродируют отдельные участки поверхности
- Язвенная (или питтинг)
- Точечная
- Межкристаллитная – распространяется вдоль границ кристалла металла
- Растрескивающая
- Подповерхностная
Основные виды коррозии
С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.
Химическая коррозия металлов
Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь. Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.
Химическая коррозия металлов бывает газовой и жидкостной.
Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).
Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.
При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.
Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла
α = Vок/VМе = Мок·ρМе/(n·AMe·ρок),
где Vок — объем образовавшегося оксида
VМе — объем металла, израсходованный на образование оксида
Мок – молярная масса образовавшегося оксида
ρМе – плотность металла
n – число атомов металла
AMe — атомная масса металла
ρок — плотность образовавшегося оксида
Оксидные пленки, у которых α < 1, не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).
Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.
При значениях α > 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.
Ниже представлены значения α для некоторых оксидов металлов
Электрохимическая коррозия металлов
Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.
При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:
- Анодного – металл в виде ионов переходит в раствор.
- Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).
Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.
Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.
Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде
2H++2e— = H2 разряд водородных ионов
2H3O++2e— = H2 + 2H2O
Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде
O2 + 4H++4e— = H2O восстановление растворенного кислорода
O2 + 2H2O + 4e— = 4OH—
Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:
- Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
- Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
- Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
- Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.
Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:
- Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
- Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.
Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:
А: Fe – 2e— = Fe2+
K: O2 + 4H+ + 4e— = 2H2O
Катодом является та поверхность, где больше приток кислорода.
- Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
- Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
- Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
- Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
- Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.
Методы защиты от коррозии металла
Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.
Металлические покрытия.
Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.
Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.
Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.
Неметаллические покрытия.
Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).
Химические покрытия.
В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:
оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);
фосфатирование – получение защитной пленки фосфатов (Fe3(PO4)2, Mn3(PO4)2);
азотирование – поверхность металла (стали) насыщают азотом;
воронение стали – поверхность металла взаимодействует с органическими веществами;
цементация – получение на поверхности металла его соединения с углеродом.
Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.
Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.
Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.
Протекторная защита – один из видов электрохимической защиты – заключается в следующем.
К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.
Коррозия
Коррозия конструкции Шуховской башни в Москве
• Прогиб
• Коррозия
• Пластическая деформация
• Усталость материала
• Удар
• Трещина
• Плавление
• Износ
Корро́зия, ржавление, ржа — это самопроизвольное разрушение металлов и сплавов в результате химического, электрохимического или физико-химического взаимодействия с окружающей средой. Разрушение по физическим причинам не является коррозией, а характеризуется понятиями «эрозия», «истирание», «износ». Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде.
Пример — кислородная коррозия железа в воде:
4 F e + 6 H 2 O + 3 O 2 → 4 F e ( O H ) 3 {displaystyle {rm {4Fe+6H_{2}O+3O_{2}rightarrow 4Fe(OH)_{3}}}}
Гидроксид железа Fe(OH)3 и является тем, что называют ржавчиной.
В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление» — коррозия железа и его сплавов с образованием продуктов коррозии, состоящих из гидратированных остатков железа.
На неметаллические материалы определение коррозии не распространяется. Применительно к полимерам существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия.
Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.
Классификация видов коррозии
Неравномерная атмосферная коррозия
Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии.
По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:
- газовая коррозия;
- атмосферная коррозия;
- коррозия в неэлектролитах;
- коррозия в электролитах;
- подземная коррозия;
- биокоррозия;
- коррозия под воздействием блуждающих токов.
По условиям протекания коррозионного процесса различаются следующие виды:
- контактная коррозия;
- щелевая коррозия;
- коррозия при неполном погружении;
- коррозия при полном погружении;
- коррозия при переменном погружении;
- коррозия при трении;
- межкристаллитная коррозия;
- коррозия под напряжением.
По характеру разрушения:
- сплошная коррозия, охватывающая всю поверхность:
- равномерная;
- неравномерная;
- избирательная;
- локальная (местная) коррозия, охватывающая отдельные участки:
- пятнами;
- язвенная;
- точечная;
- сквозная;
- межкристаллитная (расслаивающая в деформированных заготовках и ножевая в сварных соединениях).
Главная классификация производится по механизму протекания процесса. Различают два вида:
- химическую коррозию;
- электрохимическую коррозию.
Коррозия металлов
Ржавчина, самый распространённый вид коррозии.
Коррозия металла.
Если цепь велосипеда не смазывать, она ржавеет и ржавчина распространяется на звёзды Запрос «Коррозия металла» перенаправляется сюда; о рок-группе см. Коррозия металла (группа).
Коррозия металлов — разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса — «коррозионное разрушение».
Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.
Типы коррозии
Различают 4 основных вида коррозии: электрохимическая коррозия, водородная, кислородная коррозия и химическая.
Электрохимическая коррозия
Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. При электрохимической коррозии всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды — либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.
Коррозионный элемент
При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO2, образуется гальванический элемент, так называемый коррозионный элемент. Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не корродирует. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокс-потенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.
Если растворяющийся электрод коррозионно-стоек, процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём оцинковки — цинк имеет более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а цинк должен корродировать. Однако в связи с образованием на поверхности цинка оксидной плёнки процесс коррозии сильно замедляется.
Примером крупномасштабной электрохимической коррозии может служить происшествие, случившееся в декабре 1967 года с норвежским рудовозом «Анатина» (англ. Anatina), следовавшим из Кипра в Осаку. Налетевший в Тихом океане тайфун привёл к попаданию в трюмы солёной воды и образованию большой гальванической пары: медного концентрата со стальным корпусом судна, который вскоре размягчился, и судно подало сигнал бедствия. Экипаж был спасён подоспевшим немецким судном, а сама «Анатина» еле-еле добралась до порта.
Водородная и кислородная коррозия
Если происходит восстановление ионов H3O+ или молекул воды H2O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:
2 H 3 O + + 2 e ¯ → 2 H 2 O + H 2 {displaystyle {rm {2H_{3}O^{+}+2{bar {e}}rightarrow 2H_{2}O+H_{2}}}}
или
2 H 2 O + 2 e ¯ → 2 O H − + H 2 {displaystyle {rm {2H_{2}O+2{bar {e}}rightarrow 2OH^{-}+H_{2}}}}
Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:
O 2 + 2 H 2 O + 4 e ¯ → 4 O H − {displaystyle {rm {O_{2}+2H_{2}O+4{bar {e}}rightarrow 4OH^{-}}}}
Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура его поверхности неоднородна (например, межкристаллитная коррозия).
Химическая коррозия
Химическая коррозия — взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисления металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:
4 F e + 3 O 2 → 2 F e 2 O 3 {displaystyle {rm {4Fe+3O_{2}rightarrow 2Fe_{2}O_{3}}}}
Виды коррозии
- Послойная коррозия
- Нитевидная коррозия
- Структурная коррозия
- Межкристаллитная коррозия
- Избирательная коррозия
- Графитизация чугуна
- Обесцинкование
- Щелевая коррозия
- Ножевая коррозия
- Коррозионная язва
- Коррозионное растрескивание
- Коррозия под напряжением
- Коррозионная усталость
- Предел коррозионной усталости
- Коррозионная хрупкость
Борьба с коррозией
Коррозия приводит ежегодно к миллиардным убыткам, и решение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.
Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материалов и способом их нанесения. Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата является абразивоструйная очистка.
Обычно выделяют три направления методов защиты от коррозии:
- Конструкционный
- Активный
- Пассивный
Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие стали, кортеновские стали, цветные металлы.
При добавлении небольшого количества хрома в сталь на поверхности металла образуется оксидная плёнка. Содержание хрома в нержавеющей стали — более 12 процентов.
При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки.
Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод — использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.
Кислородная коррозия оцинкованного железа
Кислородная коррозия железа, покрытого оловом
Красочное покрытие, полимерное покрытие и эмалирование должны, прежде всего, предотвратить доступ кислорода и влаги. Часто также применяется покрытие, например, стали другими металлами, такими как цинк, олово, хром, никель. Цинковое покрытие защищает сталь даже когда покрытие частично разрушено. Цинк имеет более отрицательный потенциал и корродирует первым. Ионы Zn2+ токсичны. При изготовлении консервных банок применяют жесть, покрытую слоем олова. В отличие от оцинкованной жести, при разрушении слоя олова корродировать, притом усиленно, начинает железо, так как олово имеет более положительный потенциал. Другая возможность защитить металл от коррозии — применение защитного электрода с большим отрицательным потенциалом, например, из цинка или магния. Для этого специально создаётся коррозионный элемент. Защищаемый металл выступает в роли катода, и этот вид защиты называют катодной защитой. Растворяемый электрод, называют, соответственно, анодом протекторной защиты. Этот метод применяют для защиты от коррозии морских судов, мостов, котельных установок, расположенных под землей труб. Для защиты корпуса судна на наружную сторону корпуса крепят цинковые пластинки.
Если сравнить потенциалы цинка и магния с железом, они имеют более отрицательные потенциалы. Но тем не менее корродируют они медленнее вследствие образования на поверхности защитной оксидной плёнки, которая защищает металл от дальнейшей коррозии. Образование такой плёнки называют пассивацией металла. У алюминия её усиливают анодным окислением (анодирование).
Газотермическое напыление
Для борьбы с коррозией используют также методы газотермического напыления. С помощью газотермического напыления на поверхности металла создается слой из другого металла/сплава, обладающий более высокой стойкостью к коррозии (изолирующий) или наоборот менее стойкий (протекторный). Такой слой позволяет остановить коррозию защищаемого металла. Суть метода такова: газовой струей на поверхность изделия на огромной скорости наносят частицы металлической смеси, например цинк, в результате чего образуется защитный слой толщиной от десятков до сотен микрон. Газотермическое напыление также применяется для продления жизни изношенных узлов оборудования: от восстановления рулевой рейки в автосервисе до агрегатов нефтедобывающих компаний.
Термодиффузионное цинковое покрытие
Для эксплуатации металлоизделий в агрессивных средах необходима более стойкая антикоррозионная защита поверхности металлоизделий. Термодиффузионное цинковое покрытие является анодным по отношению к чёрным металлам и электрохимически защищает сталь от коррозии. Оно обладает прочным сцеплением (адгезией) с основным металлом за счет взаимной диффузии железа и цинка в поверхностных интерметаллидных фазах, поэтому не происходит отслаивания и скалывания покрытий при ударах, механических нагрузках и деформациях обработанных изделий.
Диффузионное цинкование, осуществляемое из паровой или газовой фазы при высоких температурах (375—850 °C), или с использованием разрежения (вакуума) — при температуре от 250 °C, применяется для покрытия крепёжных изделий, труб, деталей арматуры и др. конструкций. Значительно повышает стойкость стальных, чугунных изделий в средах, содержащих сероводород (в том числе против сероводородного коррозионного растрескивания), промышленной атмосфере, морской воде и др. Толщина диффузионного слоя зависит от температуры, времени, способа цинкования и может составлять 0,01—1,5 мм. Современный процесс диффузионного цинкования позволяет образовывать покрытие на резьбовых поверхностях крепёжных изделий, без затруднения их последующего свинчивания. Микротвёрдость слоя покрытия Hμ = 4000 — 5000 МПа. Диффузионное цинковое покрытие также значительно повышает жаростойкость стальных и чугунных изделий при температуре до 700 °C. Возможно получение легированных диффузионных цинковых покрытий, применяемое для повышения их служебных характеристик.
Кадмирование
Покрытие стальных деталей кадмием производится методами, аналогичными цинкованию, но даёт более сильную защиту, особенно в морской воде. Применяется значительно реже из-за значительной токсичности кадмия и его дороговизны. Также покрывают тонким слоем оксида меди, что предотвращает дальнейшее размножение коррозии.
Хромирование
Основная статья: Хромирование
Покрытие стальных деталей хромом.
Экономический ущерб от коррозии
Коррозия ухудшает работу трубопроводов.
Экономические потери от коррозии металлов огромны. В США по последним данным NACE, ущерб от коррозии и затраты на борьбу с ней составили 3,1 % от ВВП (276 млрд долларов). В Германии этот ущерб составил 2,8 % от ВВП. По оценкам специалистов различных стран эти потери в промышленно развитых странах составляют от 2 до 4 % валового национального продукта. При этом потери металла, включающие массу вышедших из строя металлических конструкций, изделий, оборудования, составляют от 10 до 20 % годового производства стали.
Обрушение Серебряного моста.
Ржавчина является одной из наиболее распространённых причин аварий мостов. Так как ржавчина имеет гораздо больший объём, чем исходная масса железа, её наращивание может привести к неравномерному прилеганию друг к другу конструкционных деталей. Это стало причиной разрушения моста через реку Мианус в 1983 году, когда подшипники подъёмного механизма проржавели внутри. Три водителя погибли при падении в реку. Исследования показали, что сток дороги был перекрыт и не был почищен, а сточные воды проникли в опоры моста. 15 декабря 1967 года Серебряный мост, соединяющий Пойнт Плезант, штат Западная Виргиния, и Канауга, штат Огайо, неожиданно рухнул в реку Огайо. В момент обрушения 37 автомобилей двигались по мосту, и 31 из них упали вместе с мостом. Сорок шесть человек погибли, и девять серьёзно пострадали. Помимо человеческих жертв и травм, был разрушен основной транспортный путь между Западной Виргинией и Огайо. Причиной обрушения стала коррозия. Мост Кинзу в Пенсильвании был разрушен в 2003 году от торнадо прежде всего потому, что центральные основные болты проржавели, существенно снизив его устойчивость.
> См. также
- Shewanella oneidensis
- Старение материалов
- Коррозия металлов, способы защиты от нее — учебный фильм, производство Центрнаучфильм.
Примечания
- Антикоррозионная защита / Козлов Д.Ю.. — Екатеринбург: ООО «ИД «Оригами», 2013. — С. 343. — 440 с. — 1000 экз. — ISBN 978-5-904137-05-2.
- «ГОСТ 5272-68: Коррозия металлов. Термины.»
- Спиридонов А. А. В служеньи ремеслу и музам. — 2-е изд. — М.: Металлургия, 1989. — С. 53. — (Научно-популярная библиотека школьника). — 50 000 экз. — ISBN 5-229-00355-3.
- Merchant and Navy Ship events (1946—2000) — 25/12 1967 (недоступная ссылка). Дата обращения 11 августа 2014. Архивировано 16 февраля 2012 года.
- См. также, например, газеты «Ogden Standard Examiner», «Bridgeport Post» за 24 декабря 1967 года.
- ISO 8501-1. «Подготовка стальной основы перед нанесением красок и подобных покрытий. Визуальная оценка чистоты поверхности Часть 1. Степени окисления и степени подготовки непокрытой стальной основы и стальной основы после полного удаления прежних покрытий.»
- Газотермическое напыление
- ГОСТ Р 9.316-2006 «Единая система защиты от коррозии и старения. Покрытия термодиффузионные цинковые. Общие требования и методы контроля.
- Доклад на 16-м Всемирном конгрессе по коррозии в Пекине, сентябрь 2005 года.
- «Руководство для подготовки инспекторов по визуальному и измерительному контролю качества окрасочных работ» — Екатеринбург: ООО «ИД «Оригами», 2009—202 с., ISBN 978-5-9901098-1-5
- «Part Of Bridge On Route I-95 Falls Into River In Greenwich,; Killing 3.». New York Times. June 29, 1983. (англ.)
- “ИЗ ИСТОРИИ КОРРОЗИИ”. журнал «Очистка. Окраска». № 4 (15): 48. Июнь 2008. Дата обращения 2010-10-03. Используется устаревший параметр |month= (справка); |access-date= требует |url= (справка)
В Викисловаре есть статья «коррозия»

Коррозия на Викискладе
- Учебный фильм «Коррозия металлов» (Школфильм)
- Таблицы применимости материалов. Коррозионная стойкость материалов. Инженерный справочник DPVA

GND: 4032518-0 · NDL: 00563793